# The Crystal Structure of trans-Dibromo-bisethylenediaminecobalt (III) Bromide Hydrobromide Dihydrate

By Shun'ichiro Ooi, Yoshimichi Komiyama, Yoshihiko Saito and Hisao Kuroya

(Received September 13, 1958)

The crystal structure of the ethylenediamine-"praseo"-chloride, trans-[Co en<sub>2</sub> Cl<sub>2</sub>] Cl·HCl·2H<sub>2</sub>O, was determined before by Nakahara and two of us1). An attempt has been made now to investigate the crystal structure of the bromine-analogue. namely, the trans-dibromo-bisethylenediamine cobalt(III) bromide hydrobromide dihydrate, trans-[Co en<sub>2</sub>Br<sub>2</sub>] Br·HBr·2H<sub>2</sub>O. This compound has almost the same properties, physical and chemical, as the corresponding chlorine-complex, and, therefore, may be expected to be isotype with the latter. However, the analysis was carried out with caution in consideration of the fact that the configuration of chloro-dinitro-triammine-cobalt(III),  $[Co(NH_3)_3(NO_2)_2Cl]$ , is quite different from that of the apparently analogous bromocompound,  $[Co(NH_3)_3(NO_2)_2Br]^{2),3)$ .

## Experimental

The crystals are well-formed dark green tablets, showing predominant (100) faces. This habit is the same as that of [Co en<sub>2</sub> Cl<sub>2</sub>]Cl·HCl·2H<sub>2</sub>O. They are monoclinic and belong to the monoclinic holohedral class. Crystals show marked dichroism; in polarized light they appear blue when the electric vector is normal to the b-axis and

yellowish green when this vector is parallel to the b-axis. From oscillation and Weissenberg photographs with Fe  $K\alpha$  radiation ( $\lambda$ =1.937 Å) the unit cell dimension is found to be:  $\alpha$ =10.98, b=8.18, c=9.46Å,  $\beta$ =113.2°. The space group determined from extinctions, is  $P2_1/c - C_{2h}^5$ .

The cell contains two formula units of [Co en<sub>2</sub> Br<sub>2</sub>]Br·HBr·2H<sub>2</sub>O (density calculated 2.28 g.cm<sup>-3</sup>; found 2.21 g.cm<sup>-3</sup>) and cobalt atoms must therefore occur on centers of symmetry.

The intensities of reflections (h0l), (hk0) were estimated by comparison with a standard scale. The exposures were taken with Fe  $K\alpha$  radiation, using multiple film technique. After correction for Lorentz and polarization factors, relative F values were obtained. No correction for absorption was made.

## Determination of the Structure

The structure determination is based on the analysis of the (hk0) and (h0l) reflections, which could be carried out in a rather straightforward fashion. Because of the occurrence of the cobalt atoms at symmetry centers, the Patterson functions were simple and comparison of these results with those obtained for [Co en2Cl2] Cl·HCl·2H2O revealed that both structures were isotype. Therefore, the Patterson function could be solved without difficulty, yielding an approximate position not only for bromine atoms but for most of the lighter atoms as well. The signs of all but weak reflections could be derived on the basis of the sets of parameters thus

<sup>1)</sup> A. Nakahara, Y. Saito and H. Kuroya, This Bulletin, 25, 331 (1952).

Y. Tanito, Y. Saito and H. Kuroya, ibid., 26, 420 (1953).

<sup>3)</sup> Y. Komiyama, ibid., 31, 26 (1958).

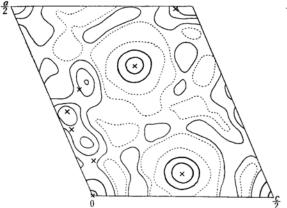



Fig. 1. Electron density projected along the b-axis. Contours are drawn at 4 e.  $\mathring{A}^{-2}$  intervals and 20 e.  $A^{-2}$  for heavy lines of Co and Br peaks. Broken lines show zero electron level.

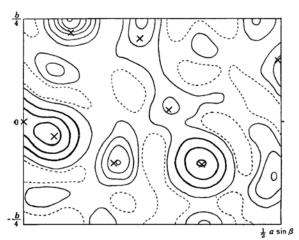



Fig. 2. Electron density projected along the c-axis. Contours are drawn in the same manner as Fig. 1.

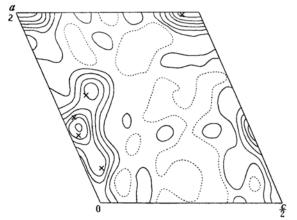



Fig. 3. Residual electron density projected along the b-axis, showing the positions of light atoms. Contours are drawn at  $2 e. Å^{-2}$  intervals.

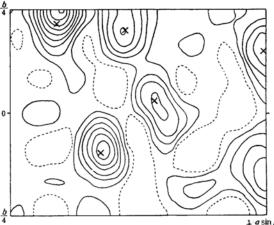



Fig. 4. Residual electron density projected along the c-axis, showing the positions of light atoms. Contour lines as in Fig. 3.

deduced. Then the Fourier syntheses of the electron density projected along [001] and [010] were evaluated. In the c-axis projection almost every atom was resolved. But it was not the case in the b-axis projection. The outlines of the ethylenediamine ligands did not come out clearly, probably due to the diffraction effect of heavy bromine atoms. In order to improve the situation, the contribution of the cobalt and bromine atoms was subtracted from the observed structure factors and trial of computing the residual electron density projections along the b-axis was made. (The result is given in Fig. 3).

Fourier refinements were repeated as usual. Final projections shown in Fig. 1—Fig. 4 lead to the structure illustrated in Fig. 5 and Fig. 6. Parameter values are listed in Table I. The parameter of the oxygen atom is less reliable because of poor resolution of the projection. The parameters listed in Table I gave the reliability index  $R=\sum ||F_o|-|F_c||/\sum |F_c|$  of 0.133 and 0.130 for (h0l) and (hk0) respectively. Calculated and observed structure amplitudes are given in Table II. In the calculation of structure factors,

TABLE I
FINAL ATOMIC COORDINATES

|       | TINAL ATOMIC | COOKDINAT | ES    |
|-------|--------------|-----------|-------|
|       | x/a          | y/b       | z/c   |
| Co    | 0            | 0         | 0     |
| Br(1) | 0.060        | -0.037    | 0.275 |
| Br(2) | 0.344        | -0.397    | 0.269 |
| N(1)  | 0.092        | 0.216     | 0.045 |
| N(2)  | 0.175        | -0.099    | 0.024 |
| C(1)  | 0.225        | 0.201     | 0.032 |
| C(2)  | 0.281        | 0.029     | 0.091 |
| O     | 0.494        | 0.150     | 0.452 |

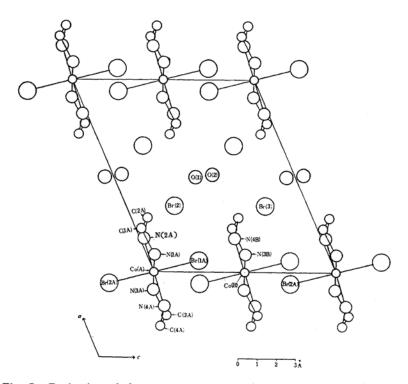



Fig. 5. Projection of the structure upon a plane normal to the b-axis.

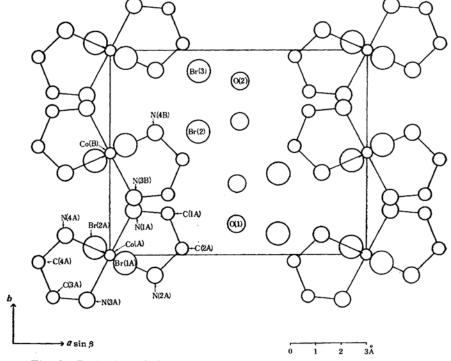



Fig. 6. Projection of the structure upon a plane normal to the c-axis.

TABLE II

|      |           |          | OBSERVED | AND   | CALCULAT         | ED STRUC         | TURE A | MPLITUDES  |                        |       |            |
|------|-----------|----------|----------|-------|------------------|------------------|--------|------------|------------------------|-------|------------|
| hkl  | $F_o$     | $F_c$    | hkl      | $F_o$ | $oldsymbol{F_c}$ | hkl              | $F_o$  | $F_c$      | hkl                    | $F_o$ | $F_c$      |
| 100  | 101       | 106      | 410      | 40    | 53               | 002              | 82     | -104       | 502                    | 66    | 59         |
| 200  | 82        | 82       | 420      | 32    | 24               | 004              | 236    | 226        | $50\mathbf{\bar{2}}$   | 86    | 67         |
| 300  | 233       | 158      | 430      | 88    | 104              | 006              | 75     | -74        | 504                    | <16   | -9         |
| 400  | <12       | -6       | 440      | 70    | 74               | 800              | 81     | 63         | $50\overline{4}$       | 10    | 16         |
| 500  | 35        | -34      | 450      | 53    | 51               |                  |        |            | 506                    | 54    | 55         |
| 600  | 75        | 60       | 460      | 60    | 73               | 102              | <9     | 13         | $50\overline{6}$       | 50    | 58         |
| 700  | 127       | 115      | 470      | 28    | 22               | $10\overline{2}$ | 12     | 5          | $50\bar{8}$            | 23    | 26         |
| 800  | 41        | -36      |          |       |                  | 104              | <14    | -18        |                        |       |            |
| 900  | <14       | 6        | 510      | 65    | <b>- 54</b>      | $10\bar{4}$      | 153    | 158        | 602                    | 47    | 38         |
| 1000 | 55        | -60      | 520      | <12   | 11               | 106              | 54     | 68         | $60\bar{2}$            | 24    | -18        |
|      |           |          | 530      | 16    | -30              | $10\overline{6}$ | 32     | -23        | 604                    | <14   | 7          |
| 020  | 163       | 169      | 540      | 14    | 22               | 108              | 26     | -44        | $60\bar{4}$            | 112   | 119        |
| 040  | 16        | 6        | 550      | 53    | 63               | $10\bar{8}$      | 116    | 96         | $60\overline{6}$       | 41    | -46        |
| 060  | <14       | -9       | 560      | 23    | 17               |                  |        |            | 608                    | 120   | 118        |
| 080  | 25        | 28       | 570      | 99    | 103              | 202              | <11    | -9         |                        |       |            |
|      |           |          |          |       |                  | $20\bar{2}$      | 12     | 15         | 702                    | 145   | 142        |
| 110  | 51        | 54       | 610      | 33    | 38               | 204              | 58     | 40         | $70\overline{2}$       | 134   | 114        |
| 120  | 122       | 115      | 620      | 22    | 13               | $20\bar{4}$      | 89     | 83         | 704                    | 96    | -96        |
| 130  | 135       | 129      | 630      | 63    | 71               | 206              | <17    | -6         | $70\bar{4}$            | 50    | 67         |
| 140  | 150       | 146      | 640      | 64    | -78              | $20\overline{6}$ | 32     | 39         | <b>70</b> <del>6</del> | 38    | 43         |
| 150  | 13        | 13       | 650      | 48    | 47               | $20\bar{8}$      | 42     | 23         | 708                    | 43    | 38         |
| 160  | 54        | 51       | 660      | 27    | -24              |                  |        |            |                        |       |            |
| 170  | 28        | 13       |          |       |                  | 302              | 97     | -93        | 802                    | 83    | 69         |
| 180  | <8        | -11      | 710      | 70    | 49               | $30\bar{2}$      | 206    | -203       | $80\overline{2}$       | 132   | 112        |
|      |           |          | 720      | 17    | -25              | 304              | 56     | 59         | 804                    | 70    | -60        |
| 210  | 65        | -60      | 730      | 74    | 56               | 304              | 167    | 187        | 808                    | 99    | 83         |
| 220  | 84        | 86       | 740      | 35    | 42               | 306              | <15    | 7          | $80\bar{8}$            | 63    | <b> 54</b> |
| 230  | 10        | -14      | 750      | 40    | 29               | 306              | 106    | -122       |                        |       |            |
| 240  | 88        | 88       |          |       |                  | $30\bar{8}$      | 168    | 140        | 902                    | 33    | 30         |
| 250  | 57        | 53       | 810      | 17    | -20              |                  |        |            | 902                    | 21    | 14         |
| 260  | 56        | 61       | 820      | 44    | -39              | 402              | 134    | 135        | 904                    | 20    | 19         |
| 270  | 91        | 95       | 830      | 62    | -60              | 402              | 70     | 82         | 90ē                    | <14   | 3          |
| 280  | <7        | 4        | 840      | 13    | -15              | 404              | 72     | 85         | 908                    | 20    | 37         |
| 010  | 0.4       |          | 850      | 10    | 10               | 404              | 65     | 71         | 4 a a =                |       |            |
| 310  | 34        | 30       | 010      | 1-    | 10               | 406              | 145    | 123        | $100\bar{2}$           | 151   | 131        |
| 320  | 124       | 122      | 910      | 17    | 18               | 40ē              | 48     | <b>-43</b> | 1004                   | 82    | <b>-75</b> |
| 330  | 80        | 81       | 920      | 35    | -29              | $40\bar{8}$      | 102    | 79         | $100\overline{6}$      | 104   | 97         |
| 340  | 13        | 4        | 930      | <9    | 13               |                  |        |            | 1107                   | 44    | 40         |
| 350  | 49        | 63       | 1010     | _ m   |                  |                  |        |            | $110\overline{4}$      | 41    | -48        |
| 360  | <14<br>56 | 19<br>51 | 1010     | <7    | 1                |                  |        |            |                        |       |            |
| 370  | 96        | 51       |          |       |                  |                  |        |            |                        |       |            |

atomic scattering factors listed in the International Table were employed. Temperature correction of the form  $\exp{-B(\sin{\theta/\lambda})^2}$ , where  $B=0.9\,\text{Å}^2$ , was applied in the final calculation of the structure factors.

## Discussion

The structure is isotype with [Co en<sub>2</sub> Cl<sub>2</sub>] Cl·HCl·2H<sub>2</sub>O. The principal points of stereochemical interest which emerge from this X-ray analysis are as follows.

(1) The structure is essentially ionic

and consists of [Co en<sub>2</sub>Br<sub>2</sub>] +, [H<sub>2</sub>O···H··· H<sub>2</sub>O] + and Br<sup>-</sup>. Since the structure is isotype with chloro-analogue, a similar consideration of the arrangement of bromine ions leads us to locate a proton midway between the two water molecules. The O···O distance is found to be 2.60 Å. The existence of the group [H<sub>2</sub>O···H····H<sub>2</sub>O] + was suggested by Huggins and this was indeed verified by our investigation on the structures of trans-dihalogeno-iso-ethylenediamine complexes<sup>4</sup>).

<sup>4)</sup> M. L. Huggins, J. Phys. Chem., 40, 723 (1936).

(2) The interatomic distances are given in Table III. Co-Br distance is found to be 2.44 Å. This is 0.14 Å larger than the corresponding Co-Cl distance and the difference agrees with that in covalent bond radius of chlorine and bromine atom. Other distances agree well with those found in [Co en<sub>2</sub> Cl<sub>2</sub>] Cl·HCl·2H<sub>2</sub>O.

TABLE III

| INTERATOMIC DISTANCES | AND BOND ANGLES |
|-----------------------|-----------------|
| Co—Br (1)             | 2.44 Å          |
| Co—N(1)               | 2.00            |
| Co-N (2)              | 2.01            |
| N(1)—C(1)             | 1.52            |
| N(2)C(2)              | 1.51            |
| C(1)C(2)              | 1.55            |
| 7 (11) 7 (77)         |                 |
| $Br(1A)\cdots N(3B)$  | 3.58            |
| $Br(2A)\cdots N(3B)$  | 3.46            |
| $Br(2)\cdots N(4B)$   | 3.58            |
| $Br(3)\cdots N(4B)$   | 3.37            |
| Br(2)···O(2)          | 3.24            |
| $Br(3)\cdots O(2)$    | 3.26            |
| O(1)···O(2)           | 2.60            |
| N(1)—Co—N(2)          | 86.5°           |
| 1,                    |                 |
| Co-N(1)-C(1)          | 109.2°          |
| Co—N(2)—C(2)          | 108.3°          |
| N(1)-C(1)-C(2)        | $107.6^{\circ}$ |
| N(2)-C(2)-C(1)        | 110.3°          |
|                       |                 |

(3) The dichroism of the crystal has been measured by Yamada et al. and their investigation revealed that the general features of the absorption curve are essentially the same as those obtained for [Co en<sub>2</sub> Cl<sub>2</sub>] Cl·HCl·2H<sub>2</sub>O<sup>5</sup>). This is quite

feasible since both structures are isotype. The marked dichroism is reasonable since all the Br-Co-Br bonds are nearly parallel to the c-crystal axis.

#### Summary

The structure of *trans*-dibromo-bisethylenediamine cobalt(III) bromide hydrobromide dihydrate has been determined by X-ray analysis.

[Co en<sub>2</sub>Br<sub>2</sub>] Br·HBr·2H<sub>2</sub>O is monoclinic, a=10.98, b=8.18, c=9.46 Å, and  $\beta=113.2^{\circ}$ , space group  $P2_1/c$ , two formula units in the cell. The structure consists of [Co  $en_2Br_2$ ] +,  $[H_2O\cdots H\cdots H_2O]$  + and Br-, and is isotype with [Co en<sub>2</sub>Cl<sub>2</sub>] Cl·HCl·2H<sub>2</sub>O. The complex ion has a center of symmetry. Two enantiomorphous ethylenediamine molecules, taking "gauche" configration, are coordinated to a cobalt atom. A cobalt atom is surrounded in a square coplanar configuration by four nitrogen atoms at distances 2.0 Å, and on a line approximately perpendicular to the plane of nitrogen atoms are two bromine atoms at distances 2.44 Å. The marked dichroism of the crystal is explainable in terms of the characteristic features in the arrangement of the complex ions in the crystal.

Part of the cost of this investigation was defrayed from the Fund for Scientific Research Expenditure of the Ministry of Education to which the authors' thanks are due.

Institute of Polytechnics Osaka City University Kita-ku, Osaka

<sup>5)</sup> S. Yamada et al., This Bulletin, 28, 222 (1955).